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Abstract

Concepts for new constrained control allocation strate-
gies are developed that deal with systems where mo-
ments are nonlinearly related to effector deflections
such as those encountered in the case of yawing mo-
ment contributions from left-right effector pairs on
aircraft. These concepts are illustrated by consider-
ing single and multiple left-right pair effector mixing
problems for moments that lie in the roll-yaw moment
plane. Methods for generating the boundary of an at-
tainable moment set for a class of multiple non-linear
effectors and for clipping unattainable moment com-
mands with axis prioritization are presented.

1 Introduction

Left-right aerodynamic surfaces such as ailerons, flaps
and elevons on aerospace vehicles often have non-
linear contributions to the total vehicle yawing mo-
ment. Since these surfaces are not normally used as
primary yaw axis effectors, these non-linear contribu-
tions are often ignored and their effects are treated as
disturbances that are rejected by a feedback control
system. In cases where the effectivencss of the pri-
mary yaw axis effector is degraded due to failures or
as a result of being in the wake of the body at high
angles of attack, these secondary nonlinear effects be-
come important.

Numerous control allocation and control effector mix-
ing algorithms have been developed over the past
decade and excellent survey papers have been writ-
ten that point out the strengths and weaknesses of
the existing approaches[l, 2]. These control mixing
and control allocation algorithms are capable of deal-
ing with systems where the moments were linearly re-
lated to control effector positions and had the ability
to account for constraints on those positions. Some
of these algorithms generate constrained control effec-

tor commands that ensure that the effectors are never
driven beyond their physical limits. Most of the algo-
rithms, however, assume that linear relationships exist
between the pseudo-commands (i.e. controlled vari-
able commands) and the effector positions. While this
assumption is at least locally valid for many of the con-
trol surfaces on found on aircraft, there are exceptions.

One particular case where this assumption can result
in incorrect control surface deflections and return un-
necessarily conservative results involves the use of left-
right aerodynamic control surfaces on aircraft. Ex-
amples of left-right aerodynamic surfaces include left-
right elevators and left-right ailerons. This type of sur-
face can generally produce pitching, rolling and yaw-
ing moments. While these surfaces normally produce
pitching and rolling moments that are locally linear in
control surface deflection, they can have a highly non-
linear contribution to the yawing moment especially
when parasitic drag dominates induced drag effects.

In particular, these surfaces can generate yawing mo-
ments that are of the same sign whether they are de-
flected up or down. This is because they generate a
drag force on the side of the vehicle on which they
are located regardless of whether they deflected in the
positive or negative direction. The yawing moments
generated by these effectors are usually small when
compared to a primary yaw-axis effector like a rudder;
however, their effects can become significant when a
rudder fails or when the aircraft is operating at high
angles of attack where flow over the rudder is inter-
rupted by the body.

This particular nonlinearity is used as motivation and
serves as an example for the concepts explored in this
paper. Methods for generating the boundary of an at-
tainable moment set for a class of multiple non-linear
effectors and for clipping unattainable moment com-
mands with axis prioritization are presented. The
techniques presented are applicable to more general
nonlinear control allocation problems.




2 Attainable Moment Set for a Single
Left-Right Effector Pair

Durham[3] developed and subsequently refined meth-
ods for determining attainable moment sets (AMS)
for effectors that generate moments M that are linear
functions M = B4 of the effector positions § subject
to constraints on those positions & = {8|d < § < 6}.
The general solution to finding the attainable moment
set for an over-actuated linear system with position
constraints involves constructing a polyhedron in mo-
ment space. Potential vertices are are constructed by
locking all control effectors at their extreme positions
in all possible combinations while allowing two effec-
tors to traverse the range of their possible positions.
Durham’s algorithm connected the vertices to form po-
tential boundary facets and determined which facets
were on the boundary of the AMS.

Left-right (LR) pairs of effectors such as ailerons, el-
evators and flaps as mentioned previously, generate
non-linear contributions to the vehicle yawing mo-
ment. Figure 1 shows the yawing moment that is
generated by deflecting the right elevon of a partic-
ular lifting body vehicle. One can see that a parabolic
fit provides an adequate approximation of the original
data. Generation of linear fits to this data for use in
a conventional control allocator that assume a linear
relationship between the moments and control effector
deflections is problematic. This is because lines fitted
using either negative deflection or positive deflection
data results in lines with slopes of opposite signs. Fur-
thermore, since no single line can accurately model the
data and no matter which line is selected, the sign of
the yawing moment estimate will be incorrect half of
the time.
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Figure 1: Yawing Moment due to Right Elevon Deflection

Here we examine a case where a LR pair of elevons
exerts yawing moment N that is proportional to the
square of deflection and rolling moment L that is a
linear function of deflection

N = Nle25125 + NTez(Sfe,
L= Lleéle =+ Lredre-

From the curve fits to aerodynamic data for a lifting
body model at a subsonic flight condition, we select
N,z = —Nj.2 = 34ft — Ib/deg® and L, = —Lie =
—4610ft — Ib/deg. The AMS is generated by holding
each surface at a fixed deflection while allowing the
other surface to vary over its range of possible values
and is shown in Figure 2.
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Figure 2: Nonlinear AMS and Lines of Constant Deflec-
tion in the Roll-Yaw Moment Plane

The AMS is also shown for the yawing moment as a
linear function of the deflections. For the linear ap-
proximation we fit data over half of the range of deflec-
tions to obtain Nj. = —N,. = £676ft — lb/deg. The
sign ambiguity results from the yawing moment deriva-
tives’ dependency on the sign of the deflections; either
choice of sign will only yield a yawing moment with
the correct sign over half of the deflection range. The
AMS for the linear case shows that a control allocator
that incorrectly assumes a linear relationship between
the yawing moment and the effector deflections will be
constrained to rolling and yawing moments that lie on
one of two lines in the roll-yaw plane. The AMS for
the improved effector model shows that larger regions
in the roll-yaw plane are reachable and the intersec-
tion of lines of constant effector deflection define the
proper blend of effectors required to achieve a partic-
ular rolling and yawing moment that lies within the
AMS.

Right Effector Iso-




3 Clipping Infeasible Moment Commands

It is interesting to note that it is not possible to gener-
ate yawing moments without generating a correspond-
ing rolling moment with one set of left-right effectors.
This point begs the question of how to clip rolling
and yawing moment commands that lie outside of the
AMS. When a moment command requires violation of
an effector position constraint, Durham[4] suggested
that the direction of a moment command should be
preserved and that the command should be clipped
such that the commanded moment vector touched the
edge of the AMS.

For the case under consideration, one can see that pre-
serving the direction of a pure yawing moment com-
mand will result in the command being clipped to zero.
A proposed method for clipping commands that lie
outside of the AMS that provides the ability to pri-
oritize moments is given below. When a command is
infeasible, we find a way of choosing a point on the
boundary of the AMS that is closest in some sense to
the infeasible command.

We propose to minimize the sum of weighted square
distances between the AMS boundary and the desired
point in moment space

min [(La— L)? + w(Ng — No(L))?] (2)

where w is a weighting factor that can be used to
weight the relative importance of achieving the rolling
or yawing moment and Ny(L) is the equation for the
AMS boundary which is closest to the desired yawing
moment N4. The first order necessary condition for an
extremum of the cost function is

L — Ly +wNy(L)(No(L) — Na) = 0, 3)

which can be solved for L either numerically or an-
alytically in special cases. Figure 3 shows the effect
of varying weights in the cost function for a hypo-
thetical infeasible moment command. Note that when
w = 0 the desired rolling moment is achieved; as w is
increased, the error in yawing moment is reduced to as
small of a value as possible while the rolling moment
error increases. This type of strategy may be useful
if other effectors are available to reduce the undesired
rolling moment if a particular left-right pair must be
used as a primary yaw-axis effector.

To account for nonlinear effectors one must consider
the most general form of the control allocation prob-
lem. This problem reduces to a constrained root-
finding problem that can be solved using clipping logic
as a pre-processing step coupled with standard root-
finding techniques. Alternatively nonlinear program-
ming techniques can be used, although it is likely that
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Figure 3: Clipping of Infeasible Moment Command

nonlinear programming may be too slow for on-line
control allocation. In order to use root-finding tech-
niques, one must first determine if a moment command
is feasible or lies within the AMS boundary. If the
command is feasible standard root-finding techniques
can be used. If a command is not feasible, it must be
clipped at the AMS boundary and the axis prioritiza-
tion method presented in the previous section provides
a means for performing this operation.

4 AMS Boundaries for Multiple Effectors

The generation of an AMS for a single LR pair is rela-
tively straightforward. Here we would like to develop a
method for generating the AMS for multiple LR effec-
tor pairs. To illustrate how this might be accomplished
we consider the rolling and yawing moments that can
be generated by two LR effector pairs of the form

Nrp = N1 82 + N26% + N385 + Nudj, @
Ly = L6 + L6 + L383 + L4éy,
and for the purposes of example we let Ny = —Np =
34ft - lb/degz, N3 = —N4 = N1/25, L1 = —L2 =
—4610ft — Ib/deg, and L3 = —L4 = L1 /5. We set all
effector deflection limits to +30deg. To generate the
upper AMS boundaries for the 1-2 effector pair we set
83 = 64 =0, 6; = 30 & = —30, and let J, vary con-
tinously between £30. The lower boundaries and the
boundaries for the 3-4 effector pair can be generated
in a similar fashion. To generate the AMS bound-
ary for both of the LR pairs acting together, one may
add the AMS of the 3-4 pair to each point on the 1-2




AMS boundary. Figure 4 shows the effect of perform-
ing this operation. In principle, the AMS boundary
could be generated by exhaustion by moving the ori-
gin of the 3-4 AMS boundary to each point on the 1-2
AMS boundary and drawing a composite AMS for the
1-2-3-4 effectors by drawing a curve that touches the
extremal points in the roll-yaw plane. Such a proce-
dure would clearly be inefficient.

Attaching Curves

Yawing Moment (ft-1b)

“ ' L 1 i

Rolting Momcnt (1)

Figure 4: Generation of AMS by Superposition

It is therefore natural to ask if there exists a method
or condition that relates the AMS of each LR pair con-
sidered individually to points on the composite bound-
ary approximated by the outline of Figure 4. The
condition for a point on the boundary turns out to
be related to the slope of the AMS boundary curves.
For convenience we shall consider the top left quad-
rants of the two boundaries and denote the bound-
ary curve for the first LR pair f(z) and the bound-
ary curve for the second LR pair g(z) as shown in
Figure 4. In order to generate the composite bound-
ary, one can generate a number of auxiliary functions
h(z,Z) = g(z — %) + f(Z) where the point (T, f(Z)) is a
point at which the boundary curve for the second LR
pair attaches to the boundary curve for the first LR
pair.

Definition 1 An attachment point to f(z) is a point
P(z, f(Z)) to which the origin of a curve g(x) is trans-
lated for the purpose of calculating values of a new
function that is composed of the two original functions

Wz,Z) = g(z - T) + f(T)

Hence, h(z,T) shifts the origin of the original curve
g(z) to a point on f(z) at x = Z. We define points on

h(x,X) = g(x-X)+ f(%)

Base Curve f(X)
h(x,%,) |
Attachin,
Curve x)
//\
f] f2 f3 *

Figure 5: Generation of the AMS Boundary

the composite boundary as those that produce maxi-
mum or minimum values of the h(z,T) as T is varied
over its range of physically realizable values.

Definition 2 The composite boundary b(x) gener-
ated from all physically realizable values of h(z,T) =
g(z — T) + f(T) is defined as the set of extremal
values of h(z,%) for {Z € R|Zmin; <T < Tmag, } ond
{-’U € Rlzmin, + Zmin, < (z-7) < Tmazy +$maxg}
where Tming,Tmin, NG Tmaz;, Tmaz, 0T€ the mini-
mum and mazimum values of x and T for which f(Z)
and g(x) physically exist.

Theorem 1 states a necessary condition for a point to
lie on the composite boundary.

Theorem 1 If f(z) and g(z) are C* with monotonic
slopes and h(z,T) = g(z — Z) + f(T) then for any z €
{-’E € leminj + Tring <(z-— E-*) < ZTmez; + Tmaa,

a point on the composite boundary,P(z, h(z,Z*)) sat-
isfies the following condition

5 a7

z

(%)

0,
= a—%f(it)

T=Z* T=T*

Proof: By definition points on the composite bound-
ary are extremal values of h(z,T) = g(z-%) + f(Z). It
is assumed that f(z) and g(z) have continuous deriva-
tives and that these derivatives are monotonic func-
tions of z. At any given value of x, we are interested
in finding an attachment point P(Z*, f(T*) that will
result in an extremal value for the composite function
h(z,Z). The first order necessary condition for an ex-
tremum of h(z,Z) is
0

-6—?5]1((1},:’1?) - =0. (6)




Applying the chain rule for derivatives and after rou-
tine manipulations, it is easy to verify that Equation 6
is equivalent to Equation 5. Since the slopes of f(z)
and g(z) are monotonic, there is one and only one
value of T that satisfies Equation 5 and this value of T
is defined as T* . n

Remark 1 If (z — T*) > Zmas, then the boundary
point is given by P[T* + Tmaz,> MTmaz, T7)]-

Remark 2 If (z — T*) < Zmin, then the boundary
point is given by P[T* + Tmin,, M(Tmin, E*)]-

Theorem 1 and Remarks 1 and 2 collectively state that
the point on h(z,Z) that has the same slope as f(z)
at the attachment point is a point on the composite
boundary, as long as that point does not require vio-
lation of the effector position limits. Theorem 1 may
be used as part of a process to determine the com-
posite boundary by solving the Equation 5 for * as a
function of = only. Contributions to the AMS from ad-
ditional LR pairs can be accommodated by repeatedly
applying this procedure. A similar procedure should
provide a means for computing AMS volumes in mo-
ment space; however, the planar case was explored here
for concept development.

5 Composite AMS Calculation

This section provides an example of how to calculate a
section of a composite AMS boundary using Theorem
1. It is relatively easy to to generate segments of the
AMS boundary for a single pair of left-right effectors.
Theorem 1 provides a means for computing composite
boundary segments given the AMS boundaries for sin-
gle L-R pairs. We will now consider the case where the
rolling and yawing moments produced by two sets of
LR pairs as in Equation 4. Note that even though the
contributions of the individual effectors to the yawing
moment are non-linear, there is no coupling between
the effectors. This implies that the total rolling and
yawing moments that are achievable by using the 1-
2 and 3-4 effector pairs together can be obtained by
summing the contributions of the respective LR pairs

Nr = Ni2 + Nag,

7
Lt = Liy + L3a. ( )

In this example we consider the following parametric
equations for the segment of the AMS boundary for
the 1-2 effector pair alone in the second quadrant of
the roll-yaw plane

Niz = K67 — K62

nv2 ’
masx 8
L2 = Ki6, — Ki02,,,,., ®)

where K, = —34ft — lb/deg?, K; = 4610ft — lb/deg
and s, 4, = 30°. Note that all effector position limits
are £30° in this example. Equation 8 will generate a
curve of constant effector deflection for dz,,, = 30°
when N, is plotted as a function of Lyp. This curve
is a segment of the AMS boundary for the 1-2 effector
pair. Eliminating the parameter d;, and solving for
N12(L12) one obtains

K

2K,,0
Nia(Ly2) = fz 4 28 2mee 1,

o ©)
Similarly one can generate an equation for the AMS
boundary for the 3-4 effector pair acting alone. Again
considering the AMS boundary in the second quadrant

C 2, 20,162,“" Lsa,

Niy(L34) = o

(10)

where C,, = K, /4 and C; = K; /2. Equations 9 and 10
can be plotted in the roll-yaw plane and for conve-
nience; we eliminate the subscripts on L and treat it
as the independent variable. Physical limits on L must
be observed for the 1-2 and 3-4 pairs in order to test
the conditions stated in Remarks 1 and 2. These limits
are given by

Ly,,.. =0,

Ly, = 2K101in = —276600ft — b,
(11)

L34mam = 0’

L34,;, = 2C101min = —138300ft — ib.

We now apply Theorem 1 and Remarks 1 and 2. First
we arbitrarily choose the 1-2 curve as the base curve,
which we will refer to as Nj2(L). The 3-4 bound-
ary curve N34(L) is chosen as the attaching curve and
the origin will in principle be shifted to all points on
Ni2(T) viz. N3s(L—L). Theorem 1 states that points
on the composite boundary occur where the slopes of
the base and attached curves are equal. The slopes of
Equations 9 and 10 are given by

6N12(L)

L+ K)é 12
aL ( + ! 2ma:|:)’ ( )

ON34(L — f) Cn
8(L-L)
Setting Equations 12 a.nd 13 equal and solving f for the

value of L that satisfies the equality, namely L", one
obtains

((L L)+ Cé,,,). (13)

C, K
- al+Cb,..) — K2 (1)

]

Now that L* can be written as a function of L only,
one can write the equation for the composite boundary




(without regard to position-limit imposed constraints
onL—L") as

v Knery Kn. o
Np(LT') = =22 y 2205, T
B( ) K‘2 K[ 2
C’n T*\2 Cn, e
+5?(L L ) +2El'52mu(L L )

(15)

Remarks 1 and 2 must now be applied to ensure that
it is physically possible to move the control surfaces to
points where the slopes are equal. If this is not phys-
ically possible, due to position limits on the effectors,
the boundary point will be evaluated at the upper or
lower limit of L for the effector-pair in question. In
this case the attaching curve if the 3-4 AMS bound-
ary whose upper and lower bounds on L are given in
Equation 11. Applying Remark 1 we find that when
L-T" > Ls,,,,,, the boundary becomes a function of
T only
— . Kn —'*2
Np(L') = KfL +2Kl

Eng T

62!110! L
c, (16)

Cn
+'0—12(L34mn)2 + 26762’"“ (L3442 )-

Similarly from Remark 2 we find that when L — ' <
L34in

Np(T’) = %f"z + gﬁ(szmnf*
i

K,

+-g—;;(L34m;..)2 + 2%52ma, (L34min)-
Figure 5 shows the composite boundary segment
Np(L,T") for the example above. Construction of the
other boundary segments will follow a similar proce-
dure and opportunities to exploit symmetry obviously
exist but were not considered here for brevity. Also,
it is clear that as additional boundary segments are
computed, there may be overlap in some regions and
a method must be devised to choose the most liberal
boundary segment at a given point.

(17)

6 Conclusion

Concepts for new constrained control allocation strate-
gies were explored in this paper that deal with systems
where moments are nonlinearly related to effector de-
flections, such as those encountered in the case of yaw-
ing moment contributions from left-right effector pairs
on aircraft. The concepts were illustrated by consider-
ing single and multiple left-right pair effector mixing
problems for moments that lie in the roll-yaw moment
plane. The attainable moment sets for individual left-
right effector pairs are relatively easy to construct, and
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Figure 6: Composite Boundary Segment

a method was presented that allows one to construct
a more complex composite boundary from the individ-
ual left-right pair attainable moment sets. Necessary
conditions for points on the boundary of the attain-
able moment set for multiple left-right effector pairs
were derived for the planar case where only two mo-
ments are specified. Extension of the theory to include
necessary conditions for points on the boundary of the
attainable moment set in 3-dimensional moment space
presently remains an open but important problem. A
method for clipping unattainable moment commands
with axis prioritization was presented.
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